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New Results for Coaxial Re-Entrant Cavity with
Partially Dielectric Filled Gap

Weiguo Xi, Wayne R. Tinga, Member, IEEE, W. A. Geoffrey Voss, and Bai Qiang Tian

Abstract—Resonant frequencies, Q-factor and electromag-
netic field intensity are presented for a set of varied parameters
of a coaxial re-entrant cavity with a gap partially filled with a
dielectric. The cavity is analyzed uwsing the mode matching
technique. The numerical results are found to be in good agree-
ment with experimental data. Based on the numerical results,
a scheme for mode identification is proposed and the mode
transition is discussed. Furthermore, the equivalent gap capac-
itances are obtained and compared with the results from an
existing formula which has been modified for the dielectric
loaded gap.

I. INTRODUCTION

E-ENTRANT cavities have the advantages of simple
mechanical construction and wide tuning range. They
have been used effectively in klystrons, solid-state device
development and dielectric measurements. Recently,
Tinga et al. [1] have developed this structure into a mi-
crowave applicator for processing and measuring mate-
rials with encouraging results. In order to precisely pre-
dict its resonant performance, a reliable and efficient
theoretical analysis method and design data are required.
Over the past fifty years, many authors have presented
the analysis of the re-entrant cavity. Few of them at-
tempted to find a rigorous field solution in a dielectric
loaded cavity. Karpova [2] first analyzed a single-post
cavity loaded with a dielectric sample having the same
diameter as the center conductor. Milewski [3] extended
the calculation to the case of a double-post. Recently,
Kaczkowski et al. [4] developed the formulation further
to allow a sample to be smaller than the center conductor.
All these analyses were carried out for dielectric mea-
surement purposes. Although some results of frequency
shift versus dielectric constant have been presented, the
dielectric loading effects on the cavity fields and resonant
behavior are not well understood.

The purpose of this paper is to present design data in
the form of mode charts and Q-factor diagrams based on
numerical results and to interpret these results in order to
acquire a better theoretical insight into the resonant char-
acteristics of this structure, enabling us, among others, to
design a new high-temperature dielectrometer.
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Fig. 1. Single-post coaxial re-entrant cavity with a gap partially filled with
a dielectric. (a) Schematic diagram of structure and subareas for mode-
matching analysis. (b) Equivalent circuit.

II. STRUCTURE AND METHOD

The cavity to be analyzed is a single-post coaxial re-
entrant cavity with a partially dielectric filled gap as shown
in Fig. 1(a). It has the advantage of easier sample loading
[1] than the double-post structure. The method used in the
numerical analysis is the mode-matching technique, which
was first introduced into cavity analysis by Hahn [5] and
was the same method employed by Whinnery et al. [6] in
their calculations of the step capacitance in coaxial lines.

The structure in Fig. 1(a) can be described as a junction
of three subareas, labeled A, B and C. The unknown field
in each subarea is expressed in an expansion of respective
TM,,, modes in a circular waveguide as suggested by the
structure’s axial symmetry. By applying the continuity
condition of tangential field components E, and H, along
the common surface of neighboring subareas, a set of lin-
ear equations for individual mode coeflicients is obtained.
Resonant frequencies and field components can then be
solved for. The formulation, which is lengthy but similar
to Kaczkowski’s [4], is here omitted.

A computer program was implemented for the calcu-
lations of resonant frequency, Q-factor and field intensity
via the mode-matching formulation. Calculation of the
resonant frequency of a given structure, with a truncation
error of less than 0.016%, requires a CPU time of about
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TABLE I
RESONANT FREQUENCY OF DIELECTRIC LOADED CAVITY
(rip =075, r,=256,L=2.0,D=0.5cm)

f, (GHz)
€, This Work Karpova’s Af (%)

2.495 1.9741 1.9745 -0.02
2.735 1.9184 1.9223 —-0.20
3.734 1.7284 1.7322 -0.22
5.605 1.4854 1.4837 0.11

30.83 0.6969 0.6959 0.14

TABLE 11
RESONANT FREQUENCY OF EMPTY CAVITY
(r, = 1.23, r, =4.51, L = 20.0 cm)
/> (GHz)

D (cm) Calculated Measured Af(%)
0.20 2.3119 2.3131 -0.05
0.50 2.3673 2.3682 -0.04
0.75 2.4047 2.4059 -0.05
1.00 2.4384 2.4380 0.04
1.20 2.4639 2.4649 -0.02
1.50 2.5004 2.5003 0.00
2.00 2.5580 2.5579 0.00
3.00 2.6616 2.6621 -0.02
4.00 2.7375 2.7376 0.00

TABLE III
FREQUENCY SHIFT DUE TO TEFLON SAMPLE
(rp =123, r, = 4.51, L = 20.0, D = 1.0 cm)
Frequency Shift (MHz)
Difference
r, (cm) Mode* Calculation Experiment (MHz)
TEM3 25.9 25.7 0.2
0.75 TEMZ 28.0 27.0 1.0
TEM? 24.3 24.7 -0.4
TEM3 6.0 6.0 0.0
0.35 TEM; 6.7 7.3 -0.6
TEM? 5.9 5.4 -0.5

*When the cavity is empty, the measured f, at TEMZ, TEMI and
TEM% are 1.744, 2.4384, and 3.1341 GHz, respectively.

half a second on our Amdahl 5870 main frame computer.
The calculated data were compared with Karpova’s and
showed a maximum difference of 0.22 % as listed in Table
I. Table II gives a comparison between the numerical and
experimental data for an empty cavity with a varying gap
and indicates the discrepancy to be less than 0.05%.
Moreover, frequency shifts due to Teflon samples with
different radii were measured and are presented in Table
III together with the calculation values for three different
modes (the mode definition will be given later). The larger
errors are believed to be experimental rather than com-
putational. Among the measurement errors, is the fre-
quency measurement error which can be as large as 1
MHz. The error due to possible air gaps at the sample
ends should be negligible for low permittivity materials
such as Teflon [7].

III. FiELD DISTRIBUTION AND RESONANT MODES

It is known that a standard coaxial cavity has a series
of fundamental TEM modes with resonant wavelengths
given by

2
N =1 ‘ 6]
n
for a closed cavity and
4
N =71 2
° 2n+1 @
for a cavity opened' at one end, where n = 1,2, - - and

[ is the cavity length.

In the presence of a gap in the center conductor as
shown in Fig. 1(a), the axial component E, appears in the
gap, hence, the field is no longer an exact TEM field.
However, if the gap is much smaller than the wavelength,
it is reasonable to expect that the field pattern away from
the gap will nearly be TEM except for a change in its
resonant wavelength. This is confirmed by the calculated
axial field distributions which are depicted in Figs. 2(a)
(e, = 1) and 3(a) (¢, = 50) along with the TEM fields. It
is shown that at a distance of 3D away from the gap, E,
and H, are almost the same as those of the TEM fields
and E,, which is associated with TM modes, decays to
about 10%. It also shows that the field pattern of ¢, = 50
is almost the same as that obtained by stretching the field
pattern of ¢, = 1 along the z axis, since it is only the
resonant wavelength that changes in the coaxial section.
However, the net energies stored in the gap section are
significantly different. Figs. 2(b) and 3(b) demonstrate the
radial distribution of gap fields and clearly show that the
gap with ¢, = 1 is electrically dominant, i.e., has much
more electric energy than magnetic energy, while the gap
with e, = 50 is magnetically dominant. Therefore, it is
justified to call the former gap capacitive and the latter
inductive. In addition, the gap fields are close to those of
the TMy;p mode in a cylindrical cavity if 7 is small, i.e.,
E, = constant, HyaJ (kr) and E, = 0. As a result, a rather
uniform temperature profile will be achieved when the
cavity is used as a microwave applicator.

From the equivalent circuit shown in Fig. 1(b), the res-
onant condition can be easily written as

cot (lw/c) - _on/Yc €))

where, Y, = jwC, for a capacitive gap and ¥, = 1/jwl,
for an inductive gap. C, and L, are the equivalent lumped
gap capacitance and inductance and Y, is the characteristic
admittance of the coaxial section. In the case of frequency
independent C, and L, the graphical solutions of (3) are
reproduced in Fig. 4 to make the following mode defini-
tion more explicit.

Fig. 4 shows that the solutions for the resonant fre-
quency of a capacitive gap are all above the horizontal

'For this paper, ‘‘opened”’ refers to ‘‘ideally opened’’ which corre-
sponds to a zero fringe capacitance.
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Fig. 2. E and H fields for a capacitive mode (r, = 1.25, r, = 4.5, D =
1.0, L = 20.0, incm, ¢, = 1.0, f, = 2.438 GHz), normalized by the TEM
field in subarea A. (a) Axial distribution in subarea A at r = 2.875 cm,
compared with the TEM field. (b) Radial distribution in the gap midplane.
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Fig. 3. E and H fields for an inductive mode (r, = 1.25,r, = 4.5, D =
1.0, L = 20.0, in cm, ¢, = 50.0, f, = 2.212 GHz), normalized by the
TEM field in subarea A. (a) Axial distribution in subarea A at r = 2.875
cm, compared with the TEM field. (b) Radial distribution in the gap mid-
plane.

749

T T

shE 1S e 15015 1 S35

iE BIEE BB 1B [RE

4 i

E \ \ |G, ]

~ 2R 3 A/’/"L/ \ 3

NN 1T \ \ 3

PR e ~ N N E

3 E N N N S NE
(53 of \ I

o F \ \ ,3;- A

2 F \ " "1 =

o 1 ‘ i

B3 1 ‘l I ! H

Y ' f 4 f L

; /LY 3

-8 Pogpaadeaaabyaa et taasa ooy loaaaloayelegerlyessd

B .5 1 1.5 2 2.5 3 3.5 4 4.5 5

204y

Fig. 4. Graphic solution for resonant frequencies of an ideal coaxial cavity
with a constant C,, or L, and the loci of resonant frequencies of a real cavity
(+ + +:¢ = 10, ooo: ¢, = 50).

axis and between (n — 1) and (n — 1/2), i.e.,

(mn—=DN/2<1I<@n—-1D\/4 @
or
alj@n — 1) < N\, < 21/(n — 1). )

These modes are defined as capacitive quasi-TEM modes
and designated as TEM,, _ ,/4. For an inductive gap, the
solutions are all located below the axis and between (n —
1/2) and n, i.e.,

@n — DN, /4 < 1 < 21\, /4 (6)
or
2/n < N, < 41/@n = 1). 7

Similarly, these modes are named inductive quasi-TEM
modes and designated as TEM,, /4. As the gap capaci-
tance disappears or approaches an infinite value, all these
quasi TEM modes become exact TEM modes as in an
opened or closed coaxial cavity. Compared with a coaxial
cavity opened at one end, a capacitive mode (or gap) vir-
tually shortens the cavity whereas an inductive mode (or
gap) lengthens the cavity.

Understanding these two types of modes is helpful in
making more efficient use of coaxial re-entrant cavities.
For example, when designing such a cavity as a micro-
wave power applicator, a capacitive mode should be cho-
sen for heating non-magnetic materials and an inductive
mode for magnetic materials so that a maximum material-
field interaction and, therefore, a high temperature or
heating rate can be obtained.

Generally speaking, the lumped gap parameter C, or L,
depends not only on cavity dimensions and the sample in
the gap but also on resonant modes (or frequency). As
shown in Fig. 4, the resonant frequencies of a given cav-
ity, matrked by crosses (e, = 10) and circles (e, = 50),
are no longer located along a straight line or a hyperbolic
curve, which means that C, and L, are frequency depen-
dent. Nevertheless, it will be shown later that a gap ca-
pacitance can be independent of frequency under certain
conditions.
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Fig. 5. (a) Resonant frequency. (b) Inverse of normalized cavity Q-factor.
(c) Sample energy density, as functions of the gap width, D (r, = 0.5, r,
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IV. MoDE CHART AND Q DIAGRAM

Resonant frequency and Q-factor are the two most im-
portant parameters of a resonator. These parameters are
computed for a typical gap width, D, sample radius, 7,
and sample dielectric constant, ¢,, and are presented in
Figs. 5-7 in the form of mode charts and normalized Q
diagrams.

On the mode charts of Figs. 5(a), 6(a), and 7(a), ca-
pacitive modes are shown by solid lines and inductive
modes by dashed lines. In contrast to the modes in stand-
ard cavities which are distinct from each other, capacitive
and inductive modes exhibit a smooth transition between
each other as D, r, and ¢, are varied. At the transition
point, both the coaxial and gap section have a balance of
electric and magnetic energy and are therefore loosely
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Fig. 6. (a) Resonant frequency. (b) Inverse of normalized cavity Q-factor.
(c) Sample energy density, as functions of the dielectric constant, €, (ry =
0.5, rn=125r,=45,L=20.0,D=1.0,in cm).

coupled. It is important to understand the mode transition
due to the variations in the sample. The mode transition
from a capacitive mode to an inductive mode may weaken
the interaction of the sample with the electric field. This
will cause problems in high temperature material heating
since the dielectric constant of most oxides and ceramics
increases with temperatures. On the other hand, it is pos-
sible to make use of this mode transition to suppress the
temperature run-away which arises from the positive tem-
perature coeflicient of the material’s loss factor. Further-
more, these mode charts show that reducing the gap and
increasing the dielectric constant or radius of the sample
have an equivalent decreasing effect on resonant frequen-
cies.

The Q-factor of a dielectric loaded cavity is expressed
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in two parts as
1/Q0= I/Qc+ 1/QD (8)

where, Q. is cavity O due to the wall loss and Qp, is cavity
Q due to the dielectric loss, i.e.,

QC = wWE/Pw (9)
and
Qp = Wg/(Wp tan §)

where, Wy and W), are the stored energy in the whole cav-
ity and in the sample; P, is the power dissipated on the
cavity walls which is inversely proportional to the square
root of the wall conductivity ¢. To be useful generally,

(10)
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we define normalized Q-factors Q, and Qp, which are in-
dependent of ¢ and tan 4, as follows

0. = 0./Vo (11)
Op = Optan 6 = W/ Wp. (12)

The inverse value of a normalized cavity Q-factor,
1/Q., is presented as a function of D, ¢, and r,/r; in
Figs. 5(b), 6(b), and 7(b). Although it seems that the cav-
ity Q-factor varies with D, €, and r, in different ways, it
is almost always true that Q, for a set of arbitrary param-
eters is intrinsically determined by the cavity resonant fre-
quency, that is, Q. increases with the resonant frequency.
An exception may occur if the frequency is so high that
the increase in wall loss overrides the increase in the stored
energy as shown in Fig. 5(b).

The inverse normalized dielectric Q-factor, 1/ Op, is
equal to the ratio of the energy stored in the sample to that
in the cavity. To be more meaningful, 1/ Op is divided
by a filling factor F and thus becomes an energy density
ratio p,, which determines the heating rate, as follows:

Wn/Vp)/We/Ve) = 1/(@pF) (13)
Vo/Ve (14)

Pa
F

where, Vj and V, are the volume of the sample and the
cavity. Therefore, Qp is related to p, by

1/Qp = tan 6/Qp = Fp,tan 6.

Curves of p, versus D, ¢, and r,/r, are plotted in Fig.
5(c), 6(c), and 7(c). They are clear evidence of a strongly
focused electric energy existing in the gap which explains
the high heating rate obtained from this structure [1].
However, the focused gap field also imposes limitations
on processable volume and loss range of the sample. For
example, if p, = 500 and tan § = 0.1, a sample with a
filling factor of 1/500 will deteriorate the total cavity
Q-factor from any high value, say 2000, to a Q of less
than 10. Therefore, it is necessary to reduce the sample
volume or increase the input power to maintain a certain
heating rate. :

In addition, the following conclusions can be drawn
from the results of the p, curves:

(i) The gap energy density rises exponentially as the
gap is reduced in Fig. 5(c). An increase in wavelength
virtually reduces the gap width which suggests that low
frequency operation is preferred to heat samples with
practical dimensions.

(i) In Fig. 6(c), the gap energy density increases al-
most linearly with e, for low ¢,. It then tends to saturate
and drop off slowly with increasing e, due to the mode
shifting away from being a capacitive mode. This rela-
tively flat portion of the curve is advantageous in main-
taining a stable heating rate while the sample’s dielectric
constant varies with temperature.

(iii) The decrease in gap energy density in Fig. 7(c)
with increase of sample radius is mainly due to the gap
field E, being approximately a J,(kr) function which de-

(15)
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creases with large 7. In order to have a relatively uniform
field profile, the sample radius should be restricted to less
than about 30% of the center conductor radius.

V. EQUIVALENT GAP CAPACITANCE

As mentioned above, a capacitive gap can be repre-
sented by a lumped capacitance derived from the known

resonant frequency via (3), i.e.,
C,=Y.cot(lw/c)/w (16)
On the other hand, Marcuvitz [8] gave an expression
for the equivalent capacitance of an empty gap as follows:
C¥ = e,nri/D + deriin((r, — r)/D).  (17)

This capacitance is composed of a parallel plate capaci-
tance

Ck = e,mri/D (18)
and a fringe capacitance
Cor = 4e,rin((ry — 1)) /D). (19)

To extend the expression to the case of a partially di-
electric filled gap, CJ, can be modified as

Ck = me,(rie, — 1) + r})/D (20)

and C;‘} remains unchanged. Therefore, (17) becomes
Cy = me,(rie, = 1) + r})/D

+ 4de,rIn((r, — r1)/D). (1)

To examine the validity of (21), a comparison between
CY of (21) and C, of (16) is made and presented in Fig.
8 for different radii and dielectric constant of the sample.
These curves show that (21) is valid if the gap width is
much smaller than the wavelength in the dielectric. We
can adopt the same conditions as given by Marcuvitz, that
is, 2eD/N << 1 and D/(r, — r)) << 1, where \ =
o/ Ve, is the wavelength in the dielectric.

VI. CONCLUSION

The results and analysis presented in this paper show
that the re-entrant gap loaded with a dielectric sample has
a pronounced effect on the resonant frequency and energy
storage, especially in the case of a high dielectric constant
or a large sample volume or a narrow gap. As a result, a
high sensitivity for dielectric determinations and a high
heating rate for material processing can be achieved when
this structure is used as a dielectrometer and a microwave
applicator. The proposed mode designation, though sim-
ple, gives qualitative insight into the cavity field, which
in turn helps in the design of practical resonant applica-
tors. The mode-charts and Q diagrams provide further
quantitative information for the design of efficient reso-
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nators. Finally, a modified design formula for the equiv-
alent gap capacitance is shown to be an acceptable ap-
proximation for a narrow gap.
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